- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dixit, Vivek (2)
-
Biswas, Pronab Kumar (1)
-
Chowdhury, Mashrur (1)
-
Cui, Xingshan (1)
-
Hales, Jordyn (1)
-
Humble, Travis S. (1)
-
Kais, Sabre (1)
-
Khan, Sakib Mahmud (1)
-
Pollard, Jacquan (1)
-
Salek, M. Sabbir (1)
-
Selvarajan, Raja (1)
-
Shen, Zecheng (1)
-
Wang, Yao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The road to computing on quantum devices has been accelerated by the promises that come from using Shor’s algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as$$O(n^{5}d)$$ , wherenis the bit-length of the number to be factorized anddis the depth of the circuit. We use a single layer of entangling gates to factorize 36 numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the method’s performance by implementing it on the IBMQ Lima hardware to factorize 55, 65, 77 and 91 which are greater than the largest number (21) to have been factorized on IBMQ hardware.more » « less
-
Salek, M. Sabbir; Biswas, Pronab Kumar; Pollard, Jacquan; Hales, Jordyn; Shen, Zecheng; Dixit, Vivek; Chowdhury, Mashrur; Khan, Sakib Mahmud; Wang, Yao (, IEEE Access)
An official website of the United States government
